Families of Completely Positive Mappings

S. P. Gudder

Department of Mathematics, University of Denver, Denver, Colorado 80208

Received July 24, 1978

The implementation and dilation of families of completely positive mappings on a *-algebra are considered.

1. INTRODUCTION

Let $\mathcal C$ be a $*$ -algebra with an identity I and let ω be a state on $\mathcal C$. We may think of $\mathcal C$ as an "observable" algebra in which the Hermitian elements represent observables of a quantum mechanical system and ω represents an expectation functional. Unlike the $C \ast$ -algebra framework, the observables in $\mathcal C$ can be unbounded. The present framework has certain advantages over that of a C^* -algebra since the unbounded observables can be treated directly instead of artificially truncating them or taking only bounded functions of them. The $*$ -algebra approach is also closely associated with studies in quantum field theory (Borchers, 1962, 1967; Gudder, 1979a). Moreover, there is a widely growing literature on $*$ -algebras showing that their structure is almost as rich as that of a C ,-algebra (Gudder and Hudson, 1978; Inove, 1976, 1977; Lassner, 1972; Lassner and Lassner, 1977; Lassner and Timmermann, 1976; Powers, 1974; Schmiidgen, 1976).

A classical result (Emch, 1976; Powers, 1971) states that a continuous ω -invariant representation of a topological group G on the automorphism group of a C *-algebra is implemented by a unitary representation of G on the GNS space. In Section 4 we generalize this result to a $*$ -algebra \mathcal{C} . In Section 3 we prove that a family of ω -completely positive maps on $\mathcal Q$ can be implemented by a family of linear operators and a $*$ -representation. We also prove that certain families of ω -completely positive maps can be dilated to a semigroup of linear operators. In Section 2 we give the basic definitions and some examples.

2. DEFINITIONS AND EXAMPLES

A map $T: \mathcal{X} \rightarrow \mathcal{X}$ is ω -completely positive if T is linear and

$$
\sum_{i,j=1}^n \omega\big[B_i^*T(A_i^*A_j)B_j\big]\geq 0
$$

for any A_1, \ldots, A_n , $B_1, \ldots, B_n \in \mathcal{C}$, $n \in \mathbb{N}$. For example, if $T: \mathcal{C} \rightarrow \mathcal{C}$ is a $*$ -homomorphism, then T is ω -completely positive for any state ω . Indeed, then T is linear and

$$
\sum_{i,j} \omega \Big[B_i^* T(A_i^* A_j) B_j \Big] = \sum_{i,j} \omega \Big[B_i^* T(A_i)^* T(A_j) B_j \Big]
$$

=
$$
\omega \Big[\Big(\sum_i T(A_i) B_i \Big)^* \sum_j T(A_j) B_j \Big] \ge 0
$$

A family T_s , $s \in S$, of ω -completely positive maps on $\mathcal C$ is *unital* if $T_s(I) = I$ for all $s \in S$. Let S be a semigroup with a unit e. If T_s is ω -completely positive for every $s \in S$ and satisfies (1) $T_e = I$, (2) $T_{st} = T_sT_t$ for every $s, t \in S$, then T_s is called a *semigroup of* ω *-completely positive maps.*

For the case $S = R^+ = \{s \in R: s \ge 0\}$, one-parameter semigroups of completely positive maps are used to describe the possibly irreversible dynamics of open quantum mechanical systems (Evans and Lewis, 1977; Kossakowski, 1972; Lindblad, 1976). In a similar way, one-parameter groups $\alpha_i, t \in R$, of automorphisms on $\mathcal C$ describe the reversible dynamics of closed quantum mechanical systems. Moreover, a symmetry group for a physical system is given by a representation α : $G \rightarrow \text{aut}(\mathcal{Q})$ of a group G into the automorphism group aut(\mathcal{C}) of \mathcal{C} . Of course, if $T_s \in \text{aut}(\mathcal{C})$, then T_e is unital.

One can also impose continuity conditions on T_s using various topologies. Since we are mainly concerned with the algebraic structure of the framework here, we shall not consider continuity conditions in Section 3. (In Section 4 we shall impose a continuity requirement for symraetry groups.)

We now give an example in which a family of ω -completely positive maps is constructed. In order to avoid certain technicalities we shall assume in the rest of this section that $\mathcal C$ is a C *-algebra and ω is a faithful state on $\mathcal C$. This example can be generalized to a \ast -algebra with an arbitrary state. Let H_{α} be the Hilbert space completion of α relative to the inner product $\langle A, B \rangle = \omega(B^*A)$, and let S be a nonempty set. Suppose we have a \ast -representation π of $\mathcal Q$ on a Hilbert space $\mathcal X$ and a collection of bounded linear operators $V: H_{\omega} \to \mathcal{K}$, $s \in S$, satisfying *(i)* $V^*_{s} \pi(A)V_{s} I \in \mathcal{X}$ for all $s \in S$, $A \in \mathcal{C}$; (ii) $[V^*_s \pi(A)V_s]B = V^*_s \pi(A)V_sB$ for all $s \in S$, A, $B\in\mathcal{C}$. If we define T_s : $\mathcal{C} \rightarrow \mathcal{C}$ by $T_s(A) = V_s^*\pi(A)V_sI$, then T_s , $s \in S$, is a family of ω -completely positive maps on $\mathcal C$. Indeed, T_s is clearly linear for all $s \in S$, and

$$
\sum_{i,j} \omega \Big[B_i^* T_s(A_i^* A_j) B_j \Big] = \sum_{i,j} \omega \Big[B_i^* V_s^* \pi (A_i^* A_j) V_s B_j \Big]
$$

$$
= \sum_{i,j} \langle V_s^* \pi (A_i)^* \pi (A_j) V_s B_j, B_i \rangle
$$

$$
= \langle \sum_j \pi (A_j) V_s B_j, \sum_i \pi (A_i) V_s B_i \rangle \ge 0
$$

The family T_s is unital if and only if V_s is an isometry for all $s \in S$. Indeed, if V_s is an isometry, then $T_s(I) = V_s^* V_s I = I$, so T_s is unital. Conversely, if T_s is unital, then

$$
V_s^* V_s A = \left[V_s^* \pi(I) V_s I \right] A = T_s(I) A = A
$$

for all $A \in \mathcal{C}$. Since \mathcal{C} is dense in H_{ω} , we have $V^*_{s}V_{s}x = x$ for all $x \in H_{\omega}$.

Suppose V_s is an isometry for all $s \in S$ and let P_s : $\mathcal{H} \rightarrow \mathcal{H}$ be the projection $P_s = V_s V_s^*$. If $P_s \in \pi(\mathcal{C})'$, the commutant of $\pi(\mathcal{C})$, for all $s \in S$, then T_s is a family of *-homomorphisms. Indeed, $T_s(A^*) = T_s(A)^*$ since

$$
\langle B, T_s(A)^* \rangle = \omega [T_s(A)B] = \langle T_s(A)B, I \rangle
$$

= $\langle V_s^* \pi(A) V_s B, I \rangle = \langle B, V_s^* \pi(A^*) V_s I \rangle = \langle B, T_s(A^*) \rangle$

Moreover, T_s is a homomorphism since

$$
T_s(AB) = V_s^* \pi(A) \pi(B) V_s I = V_s^* \pi(A) V_s V_s^* \pi(B) V_s I
$$

=
$$
[V_s^* \pi(A) V_s I](V_s^* \pi(B) V_s I) = T_s(A) T_s(B)
$$

for all $A, B \in \mathcal{C}$.

If S is a semigroup with unit e and V_s , π satisfy (i) and (ii') $[V_{st}^*\pi(A)V_{st}I]B=V_{s}^*\pi[V_{t}^*\pi(A)V_{t}I]V_{s}B$ for all $s,t\in S$, $A,B\in\mathcal{C}$; (iii) $V_{e}^{*}\pi(A)V_{e}I=A$ for all $A\in\mathcal{C}$; then T, defined above is a semigroup of ω -completely positive maps. Indeed, letting $t = e$ in (ii') and applying (iii) gives

$$
T_s(A)B = \left[V_s^*\pi(A)V_sI\right]B = V_s^*\pi(A)V_sB
$$

Hence, (ii) holds and T_s is a family of ω -completely positive maps. Property (1) follows from (iii). To show that Property (2) holds, we have by (ii')

$$
T_{st}(A) = V_{st}^* \pi(A) V_{st} I = V_s^* \pi [V_t^* \pi(A) V_t I] V_s I
$$

$$
= V_s^* \pi [T_t(A)] V_s I = T_s [T_t(A)]
$$

In the next section we shall prove that the converses of the above results essentially hold. In particular, we shall show that every family of ω -completely positive maps on a \ast -algebra has roughly the above form.

3. IMPLEMENTATION

Let $\mathcal C$ be a $*$ -algebra with identity I and let ω be a state on $\mathcal C$. The GNS construction (Powers, 1974) provides a unique (to within unitary equivalence) closed *-representation π_{ω} of $\mathcal C$ with domain $D(\pi_{\omega})$ in a Hilbert space H_{ω} and a strongly cyclic vector $x_0 \in D(\pi_{\omega})$ such that $\omega(A)$ = $\langle \pi_{\omega}(A)x_0, x_0 \rangle$ for all $A \in \mathcal{C}$. We now prove our main result. The first part of the proof follows Nagy (1955) closely (see also Evans and Lewis, 1977; Gudder, 1979b).

> *Theorem 1.* Let T_s , $s \in S$, be a family of ω -completely positive maps on \mathcal{C} .

> (a) There exists a Hilbert space \mathcal{H}_{ω} , a closed *-representation ρ_{ω} of $\mathcal C$ with domain $D(\rho_{\omega}) \subseteq \mathcal H_{\omega}$ and a set of linear operators V_s : $D(\pi_{\omega}) \to \mathcal{H}_{\omega}$ such that $\pi_{\omega}[T_s(A)] = V_s^* \rho_{\omega}(A) V_s$ for all $s \in S, A \in \mathcal{C}$. (b) If T_s is unital, then V_s is an isometry for all $s \in S$.

> (c) If T_s is a unital *-homomorphism for all $s \in S$ and P_s : $\mathcal{H}_{\omega} \to \mathcal{H}_{\omega}$ is the projection $P_s = V_s V_s^*$, then $P_s \in \rho_{\omega}(\mathcal{Q})'$. Conversely, if $P_s \n\in \rho_\omega(\mathcal{X})'$, then $A \to \pi_\omega[T_s(A)]$ is a *-representation.

Proof. (a) Let F be the set of functions $f: \mathcal{Q} \rightarrow D(\pi_{\omega})$ such that $f(A)=0$ except for finitely many $A \in \mathcal{C}$ and let $\mathcal{F} = {\phi: \mathcal{C} \rightarrow D(\pi_{\omega})}.$ For $\phi \in \mathcal{F}$, $f \in F$, define the sesquilinear form

$$
\langle \phi, f \rangle_1 = \sum_{A \in \mathcal{C}} \langle \phi(A), f(A) \rangle
$$

For $s \in S$, define \hat{T}_s : $F \rightarrow \mathscr{F}$ by

$$
(\hat{T}_s f)(A) = \sum_{B \in \mathcal{C}} \pi_{\omega} \big[T_s(A^*B) \big] f(B)
$$

Families of Completely Positive Mappings 939

It is shown in Gudder (1979b) (for a similar result see Evans and Lewis, 1977; Nagy, 1955) that \hat{T}_s is positive for all $s \in S$; that is, $\langle \hat{T}_s f, f \rangle_1 \ge 0$ for every $f \in F$. Define the inner product $\langle \cdot, \cdot \rangle_s$, $s \in S$, on $\hat{T}_s F \subseteq \mathcal{F}$ by $\langle \hat{T}_f, \hat{T}_g \rangle = \langle \hat{T}_f, g \rangle$, where $f, g \in F$ (it is shown in Evans and Lewis, 1977; Gudder, 1979b; Nagy, 1955 that this is well-defined and is positive definite and hence, an inner product). Let \mathcal{H}_s , $s \in S$, be the Hilbert space completion of $\hat{T}_s F$ relative to $\langle \cdot, \cdot \rangle_s$ and let $\mathcal{H}_{\omega} = \bigoplus_{s \in S} \mathcal{H}_s$. For $A \in \mathcal{C}$ and $x \in D(\pi_{\omega})$ define $x_A \in F$ by $x_A(B) = x \delta_{A,B}$. Define $V_s(A)$: $D(\pi_{\omega}) \to \mathcal{H}_{\omega}$ by $[V_{\gamma}(A)x]_i = \hat{T}_{\gamma}x_{A}\delta_{\gamma}$. Then $V_{\gamma}(A)$ is a linear operator for all $s \in S$, $A \in \mathcal{C}$ and

$$
\langle V_s(A)x, V_s(B)y \rangle = \langle \hat{T}_s x_A, \hat{T}_s y_B \rangle_s = \langle \hat{T}_s x_A, y_B \rangle_1
$$

= $\langle \hat{T}_s x_A(B), y \rangle = \langle \pi_\omega [T_s(B^*A)]x, y \rangle$

Hence $\pi_{\omega}[T_s(B^*A)] = V_s(B)^* V_s(A)$ for all $s \in S$, $A, B \in \mathcal{C}$. Define $\rho_{\omega}(A)$: $\bigoplus_{s\in S}T_sF\rightarrow\mathcal{H}_\omega$ by $[\rho_\omega(A)f]_s(B)=f_s(A^*B)$. It is clear that $A\mapsto\rho_\omega(A)$ is an algebra homomorphism. We now show that $\rho_{\omega}(A)$ leaves $\bigoplus T_{\gamma}F$ invariant. It suffices to prove that $[\rho_{\omega}(A)f]_s(B) \in \hat{T}_s F$ for every $f \in \mathcal{K}_{\omega}$. Since every element of F has the form $g = \sum x_{iA_i}$ and

$$
(\hat{T}_s \Sigma x_{iA_i})(B) = \Sigma \pi_{\omega} [\; T_s(B^*A_i) \;] x_i
$$

we see that

$$
\left\{\pi_{\omega} \left[\right. T_s((\cdot)^*A)\right]x: A \in \mathcal{C}, x \in D(\pi_{\omega})\right\}
$$

generates \hat{T}_sF . Hence, it suffices to prove the above for f of the form $f_{\epsilon}(C) = \pi_{\omega}[T_{\epsilon}(C^*D)]x$. This follows from

$$
[\rho_{\omega}(A)f]_s(B) = f_s(A^*B) = \pi_{\omega} [T_s(B^*AD)]x
$$

$$
= (\hat{T}_s x_{AD})(B) \in \hat{T}_s F
$$

We next show that $\rho_{\omega}(A^*) \subset \rho_{\omega}(A)^*$. Again, for f defined as above and $g \in \mathcal{H}_\omega$ we have

$$
\langle g_s, [\rho_\omega(A)f]_s \rangle_s = \langle g_s, \rho_\omega(A)\pi_\omega [\ T_s((\cdot)^*D)]x \rangle_s
$$

$$
= \langle g_s, \pi_\omega [\ T_s((\cdot)^*AD]x) \rangle_s = \langle g_s, \hat{T}_s x_{AD} \rangle_s
$$

$$
= \langle g_s, x_{AD} \rangle_1 = \langle g_s(AD), x \rangle = \langle [\rho_\omega(A^*)g]_s(D), x \rangle
$$

$$
= \langle [\rho_\omega(A^*)g]_s, x_D \rangle_1 = \langle [\rho_\omega(A^*)g]_s, \hat{T}_s x_D \rangle_s
$$

$$
= \langle [\rho_\omega(A^*)g]_s, f_s \rangle_s
$$

Hence, ρ_{ω} is a *-representation of $\mathcal C$ and has a unique extension to a closed *-representation (also denoted by ρ_{ω}) of $\mathcal C$ with domain $D(\rho_{\omega}) \subseteq$ $\mathcal{K}_{\omega}.$

For $f \in \mathcal{K}_a, x \in D(\pi_a)$ we have

$$
\langle V_s(A^*)f, x \rangle = \langle f, V_s(A)x \rangle = \langle f_s, \hat{T}_s x_A \rangle_s
$$

= $\langle f_s, x_A \rangle_1 = \langle f_s(A), x \rangle$

Hence, $V_s(A)^*f = f_s(A)$. Defining $V_s = V_s(I)$ we have

$$
\pi_{\omega} \left[T_s(A) \right] x = \pi_{\omega} \left[T_s(AI) \right] x = V_s(A^*)^* V_s(I) x
$$

$$
= \left[V_s(I) x \right]_s(A^*) = \left[\rho_{\omega}(A) V_s(I) x \right]_s = V_s^* \rho_{\omega}(A) V_s x
$$

(b) If T_s is unital, then $I = \pi_{\omega}[T_s(I)] = V_s^* V_s$ so V_s is an isometry.

(c) It suffices to show that $\rho_{\omega}(A)$: $V_{\gamma}D(\pi_{\omega}) \to V_{\gamma}D(\pi_{\omega})$. For $x \in D(\pi_{\omega})$ we have

$$
[\rho_{\omega}(A)V_s x]_t(B) = (V_s x)_t(A^*B) = (\tilde{T}_A x_I)(A^*B)\delta_{s,t}
$$

$$
= \delta_{s,t} \pi_{\omega} [\ T_s(B^*A)]x = \delta_{s,t} \pi_{\omega} [\ T_s(B^*)] \pi_{\omega} [\ T_s(A)]x
$$

$$
= \delta_{s,t} \hat{T}_s [\pi_{\omega}(T_s(A))x]_t(B) = [\ V_s \pi_{\omega}(T_s(A))x]_t(B)
$$

Therefore,

$$
\rho_{\omega}(A) V_s x = V_s \pi_{\omega} \left[T_s(A) \right] x \in V_s D(\pi_{\omega})
$$

The converse is straightforward.

We now show that certain families of ω -completely positive maps can be dilated to a semigroup of linear operators. For a related result for C*-algebras see Evans (1976). A semigroup S is called a *cancellation semigroup* if $st = su$ implies that $t = u$ for any $s, t, u \in S$.

> *Corollary 2.* Let S be a cancellation semigroup with unit e , and let T_s , $s \in S$, be a family of ω -completely positive maps satisfying $T_e = I$. Then there exists a Hilbert space \mathcal{H}_{ω} with $H_{\omega} \subseteq \mathcal{H}_{\omega}$, a closed *-representation ρ_{ω} of $\mathcal C$ with domain $D(\rho_{\omega}) \subseteq \mathcal K_{\omega}$, and a semigroup of linear operators W_s , $s \in S$, on \mathcal{H}_{ω} satisfying

$$
\pi_{\omega} \big[T_s(A) \big] = PW_s^* \rho_{\omega}(A) W_s | D(\pi_{\omega}) \tag{3.1}
$$

for all $s \in S$, $A \in \mathcal{C}$, where P is the projection from \mathcal{K}_{ω} onto H_{ω} . Moreover, the closed span of the set $\{\rho_{\omega}(A)W_{\omega}(X; X \in H_{\omega}, S \in S, A\})$ $\in \mathcal{C}$ equals \mathcal{K}_{ω} .

Proof. Define \mathcal{H}_{ω} , ρ_{ω} , and V_{ω} as in the proof of Theorem 1. Using the unitary operator V_e : $H_{\omega} \to V_e H_{\omega} \subseteq \mathcal{K}_{\omega}$, identify H_{ω} with $V_e H_{\omega}$. For $s \in S$, define W_s : $\oplus \hat{T}_t F \to \oplus \hat{T}_t F$ as follows. If $f_t = \hat{T}_t x_A$, then $(W_s f)_{st} = \hat{T}_{st} x_A$ and extend by linearity. This is well defined since S is a cancellation semigroup. Clearly, $W_e = I$ and $W_{su} = W_s W_u$ for all $s, u \in S$ so W_s is a semigroup. Now

$$
\rho_{\omega}(A)\hat{T}_s x_I(B) = \hat{T}_s x_I(A^*B) = \pi_{\omega} [\ T_s(B^*A)]x
$$

$$
= \hat{T}_s x_A(B)
$$

and hence, $\rho_{\omega}(A) \hat{T}_x x_I = \hat{T}_x x_A$. For $x, y \in D(\pi_{\omega})$ we then have

$$
\langle W_s^* \rho_\omega(A) W_s x, y \rangle = \langle \rho_\omega(A) W_s x, W_y \rangle
$$

$$
= \langle \rho_\omega(A) W_s \hat{T}_e x_I, W_s \hat{T}_e y_I \rangle = \langle \rho_\omega(A) \hat{T}_s x_I, \hat{T}_s y_I \rangle_s
$$

$$
= \langle \hat{T}_s x_A, \hat{T}_s y_I \rangle_s = \langle \hat{T}_s x_A, y_I \rangle_1 = \langle \hat{T}_s x_A(I), y \rangle
$$

$$
= \langle \pi_\omega \big[T_s(A) \big] x, y \rangle
$$

It follows that (3.1) holds. The rest of the proof is straightforward.

4. INVARIANT SYMMETRY GROUPS

Theorem 1 shows that a family T_s of ω -completely positive maps is implemented by a set of linear operators V_s and a closed *-representation ρ_{ω} . An important standard result in C*-algebras shows that an ω -invariant symmetry group is implemented by a unitary representation (Emch, 1972; Nagy, 1955). In this section we prove that this latter result holds for a ,-algebra.

Let G be a topological group and let α : $G \rightarrow \text{aut}(\mathcal{C})$ be a representation of G into the automorphism group of a *-algebra \mathcal{C} . For a state ω on \mathcal{C} we say that α is ω -continuous if $g_i \rightarrow g(g_i \text{ a net in } G)$ implies that $\omega[B\alpha_{g}(A)]\rightarrow \omega[B\alpha_{g}(A)]$ for every $A, B \in \mathcal{X}$. Following the notation of Section 3, π_{ω} is the GNS representation of $\mathcal C$ with domain $D(\pi_{\omega})\subseteq H_{\omega}$ and strongly cyclic vector $x_0 \in D(\pi_\omega)$.

Theorem 3. Let α : $G \rightarrow \text{aut}(\mathcal{X})$ be an ω -continuous representation of the topological group G and suppose ω is α invariant (that is, $\omega[\alpha_{\sigma}(A)] = \omega(A)$ for all $g \in G$, $A \in \mathcal{C}$). Then there exists a strongly continuous unitary representation U of G on H_{ω} such that U_{g} . $D(\pi_{\omega}) \rightarrow D(\pi_{\omega}), U_{g} x_{0} = x_{0}$, and

$$
\pi_{\omega}\big[\alpha_{g}(A)\big] = U_{g}\pi_{\omega}(A)U_{g}^{*} \tag{4.1}
$$

for all $g \in G$, $A \in \mathcal{C}$.

Proof. Define $U_g[\pi_{\omega}(A)x_0] = \pi_{\omega}[\alpha_g(A)]x_0$, for all $g \in G$, $A \in \mathcal{C}$. This is well defined, since $\pi_{\omega}(A)x_0 = \pi_{\omega}(B)x_0$ implies that

$$
\|\pi_{\omega}\big[\alpha_{g}(A)\big]x_{0} - \pi_{\omega}\big[\alpha_{g}(B)\big]x_{0}\|^{2} = \|\pi_{\omega}\big[\alpha_{g}(A-B)\big]x_{0}\|^{2}
$$

$$
= \omega\big[\alpha_{g}((A-B)^{*}(A-B))\big]
$$

$$
= \omega\big[\left(A-B\right)^{*}(A-B)\big] = \|\pi_{\omega}(A-B)x_{0}\|^{2} = 0
$$

Clearly, U_g is a linear operator from $\pi_{\omega}(\mathcal{X})$ onto itself. Also, U_g is unitary since

$$
\langle U_g \pi_{\omega}(A) x_0, U_g \pi_{\omega}(B) x_0 \rangle = \langle \pi_{\omega} [\alpha_g(A)] x_0, \pi_{\omega} [\alpha_g(B)] x_0 \rangle
$$

= $\omega [\alpha_g(B^*A)] = \omega(B^*A) = \langle \pi_{\omega}(A) x_0, \pi_{\omega}(B) x_0 \rangle$

Since $\pi_{\omega}(\mathcal{C})x_0$ is dense in H_{ω} , U_{ν} has a unique unitary extension (also denoted by U_{φ}) to H_{ω} . Moreover, $U_{\varphi h} = U_{\varphi} U_{h}$ for all $g, h \in G$ since

$$
U_{gh}[\pi_{\omega}(A)x_0] = \pi_{\omega}[\alpha_{gh}(A)]x_0 = \pi_{\omega}[\alpha_g \alpha_h(A)]x_0
$$

$$
= U_g[\pi_{\omega}(\alpha_h(A))]x_0 = U_g U_h[\pi_{\omega}(A)x_0]
$$

To show that U_g is strongly continuous, suppose that $g_i \rightarrow g$. Then

$$
|| U_{g_i} [\pi_{\omega}(A)x_0] - U_{g} [\pi_{\omega}(A)x_0] ||^2 = 2\omega(A^*A) - 2 \operatorname{Re} \omega [\alpha_g(A^*) \alpha_{g_i}(A)]
$$

$$
\rightarrow 2\omega(A^*A) - 2 \operatorname{Re} \omega [\alpha_g(A^*) \alpha_g(A)] = 0
$$

A limiting argument then shows that $U_{g}x \rightarrow U_{g}x$ for any $x \in H_{\omega}$.

We now show that

$$
U_g \pi_\omega(A) U_g^* \pi_\omega(B) x_0 = \pi_\omega \big[\alpha_g(A) \big] \pi_\omega(B) x_0 \tag{4.2}
$$

for all $g \in G$, $A, B \in \mathcal{C}$. Indeed $\langle U_{\sigma} \pi_{\omega}(A) U_{\sigma}^* \pi_{\omega}(B) x_0, \pi_{\omega}(C) x_0 \rangle = \langle \pi_{\omega}(A) \pi_{\omega} [\alpha_{\sigma-1}(B)] x_0, \pi_{\omega} [\alpha_{\sigma-1}(C)] \rangle$ $=\langle \pi_{\omega} \big[A \alpha_{e-1}(B) \big] x_0, \pi_{\omega} \big[\alpha_{e-1}(C) \big] \rangle$ $=\omega\left[\alpha_{\alpha-1}(C^*)A\alpha_{\alpha-1}(B)\right]=\omega\left[\alpha_{\alpha-1}(C^*\alpha_{\alpha}(A)B)\right]$ $=\omega\big[\,C^*\alpha_{\rm o}(A)B\,\big]=\langle\pi_{\rm o}\big[\,\alpha_{\rm o}(A)\,\big]\pi_{\rm o}(B)\chi_{\rm o},\pi_{\rm o}(C)\chi_{\rm o}\rangle$

To show that $U_g: D(\pi_\omega) \to D(\pi_\omega)$, let $x \in D(\pi_\omega)$. Since x_0 is strongly cyclic, there exists a net $A_i \in \mathcal{C}$ such that

$$
\pi_{\omega}(A)\pi_{\omega}(A_i)x_0 \to \pi_{\omega}(A)x \tag{4.3}
$$

for every $A \in \mathcal{C}$. Then $\alpha_{\mathfrak{p}}(A_i) \in \mathcal{C}$ and

$$
\pi_{\omega} \left[\alpha_{g}(A_{i}) \right] x_{0} = U_{g} \left[\pi_{\omega}(A_{i}) x_{0} \right] \rightarrow U_{g} x
$$

Moreover, $\pi_{\omega}(A)\pi_{\omega}[\alpha_{\varrho}(A_i)]x_0$ is Cauchy since

$$
\begin{aligned}\n\|\pi_{\omega}(A)\pi_{\omega}\big[\alpha_{g}(A_{i})\big]x_{0} - \pi_{\omega}(A)\pi_{\omega}\big[\alpha_{g}(A_{j})\big]x_{0}\| \\
&= \|\pi_{\omega}(A)U_{g}\big[\pi_{\omega}(A_{i})x_{0} - \pi_{\omega}(A_{j})x_{0}\big]\| \\
&= \|\Upsilon_{g}\pi_{\omega}\big[\alpha_{g-1}(A)\big]\big[\pi_{\omega}(A_{i})x_{0} - \pi_{\omega}(A_{j})x_{0}\big]\| \\
&\leq \|\pi_{\omega}\big[\alpha_{g-1}(A)\big]\big[\pi_{\omega}(A_{i})x_{0} - \pi_{\omega}(A_{j})x_{0}\big]\| \rightarrow 0\n\end{aligned}
$$

where the second equality follows from (4.2) and the convergence to 0 follows from (4.3). Since all of the $\pi_{\omega}(A)$ are closed operators, it follows that $U_{\sigma} x \in D(\pi_{\omega}).$

Finally, (4.1) follows from (4.2), the invariance of $D(\pi_{\omega})$ under U_{g} and a limiting argument.

It is straightforward to show that the unitary representation U_g is unique up to a unitary equivalence.

REFERENCES

- Borehers, H. (1962). "On the structure of the algebra of field operators," *Nuovo Cimento, 24,* 214-236.
- Borchers, H. (1967). "On the theory of local observables," in *Cargese Lectures in Theoretical Physics,* F. Lucat, ed. Gordon and Breach, New York.
- Emeh, G. (1972). *Algebraic Methods in Statistical Mechanics and Quantum Field Theory.* Wiley-Interscience, New York.
- Evans, D. (1976). "Positive linear maps on operator algebras," *Communications in Mathematical Physics, 48,* 15-22.
- Evans, D., and Lewis, J. (1977). "Dilations of irreversible evolutions in algebraic quantum theory." Preprint, Dublin Institute for Advanced Studies, No. 24.
- Gudder, S. (1979a). *Stochastic Methods in Quantum Mechanics.* Elsevier-North Holland, New York.
- Gudder, S. (1979b). "Positive definite functions" (submitted for publication).
- Gudder, S., and Hudson, R. (1978). "A noncommutative probability theory," *Transactions of the American Mathematical Society.*
- Inoue, A. (1976,1977). "On a class of unbounded operator algebras I, II, III," *Pacific Journal of Mathematics, 65, 66,* 69, 77-95, 411-431, 105-115.
- Kossakowski, A. (1972). "On quantum statistical mechanics of non-Hamiltonian systems," *Reports on Mathematical Physics,* 4, 247-273.
- Lassner, G. (1972). "Topological algebras of operators," *Reports on Mathematical Physics, 3,* 279-293.
- Lassner, G., and Lassner, G. A. (1977). "Completely positive mappings and unbounded observables," *Reports on Mathematical Physics,* 11, 113-140.
- Lassner, G., and Timmermann, W. (1976). "Classification of domains of operator algebras," *Reports on Mathematical Physics,* 9, 205-217.
- Lindblad, G. (1976). On the generators of quantum dynamical semigroups, *Communications in Mathematical Physics,* 48, 119-130.
- -Nagy, B. Sz. (1955). "Extensions of linear transformations in Hilbert space which extend beyond this space," Appendix to F. Riesz and B. Sz.-Nagy, *Functional Analysis.* Ungar, New York.
- Powers, R. (1971). "Self-adjoint algebras of unbounded operators," *Communications in Mathematical Physics,* 21, 85-124.
- Powers, R. (1974). "Self-adjoint algebras of unbounded operators II," *Transactions of the American Mathematical Socie~,* 187, 1-33.
- Schmiidgen, K. (1976). "Uniform topologies and strong operator topologies on polynomial algebras and on the algebra of CCR," *Reports on Mathematical Physics,* 10, 369-384.